Discharge of water and suspended sediments to the South Bay from Coyote Creek and Guadalupe River watersheds:

Water Years 2003 – 2005

Lester McKee (PhD) Watershed Program Manager San Francisco Estuary Institute (SFEI)

Outline

- Geography
- Water discharge variability
- Sediment loads
- Grainsize
- Maintenance sediment removal
- Sediment quality
- Summary and conclusions

Intra-annual Runoff - Guadalupe

Suspended Load

Guadalupe Sediment Data Collection

Turbidity v SSC Regression

Suspended Sediment Concentration

Monthly Suspended Sediment Load (e.g. Guadalupe)

October-April = 96%

Wet Season Sediment Loads

Sediment Grainsize

Guadalupe Sediment Grainsize (Detail)

Grainsize (micron = 1/1000 mm)

Settling Velocities

(USEPA design settling velocities assuming Stokes Law settling (Driscoll 1986))

Grainsize (micron)

Thought Experiment

Assume:

- 10 km from Hwy 101 to a Salt Pond
- Velocities are 3 m/s at peak flow for a flood 3 m depth

Then:

It will take 1 hour for water to travel

Assume:

- All sediment remains in suspension on the rising stage and 80% of sediment is transported on the rising stage
- Water column is only 1 m depth in Alviso Slough
- Particle density of 2 g/cm³

Then:

- Particles < 20 micron will never settle in the channel during a flood
- 80% of the particles are less than 20 micron
- >90% of all suspended sediment is flushed through the system

Bed Load

Bed Load Sediment Grainsize

Fate of Bed Sediment

- WY 2005 transported 1,500 t
- Assume 1.5 g/cm^3 then $1,000 \text{ m}^3$
- SCVWD removed 56,000 yd³ (43,000 m³) downstream from Hwy 101 over 27 years = 1,600 m³/y
- Maintenance sediment removal easily accounts for all bed load transport if we assume WY 2005 represents a little less than the long term average

Suspended Sediment Quality

Bed Sediment Quality

Grain Size (mm)

Comparisons to Zone 6 Line B

Water Year	Guadalupe R. (414 km²)	Coyote Ck. (830 km²)	Zone 6 Line B (2.2 km²)
2000			19,700
2001			8,404
2002			906
2003	10,787		
2004	8,219	6,571	
2005	4,918	10,162	
<u>Total</u>	<u>23,924</u>	<u>16,733</u>	<u>29,010</u>

Conclusions

- Sediment loads have been measured for only a small window of climatic variability
- Suspended sediment is very fine and is unlikely to be trapped in creeks during floods
- Maintenance sediment removal is about the same magnitude as bed load sediment
- Suspended sediments in Guadalupe R. are contaminated with Hg however even in Guadalupe River, the bed sediment is relatively clean
- Suspended sediments in other South Bay watersheds with upland supply are also likely to be clean
- Small watersheds supply a disproportionately large amount of sediment presently we are underestimating total sediment supply for restoration because we have virtually no information on these small watersheds

Acknowledgements

People and organizations

- SFEI field scientists
- SPLWG
- MLML
- USGS field staff

<u>Funding</u>

CEP

- **RMP**
- USACE / SCVWD
- SCVURPPP

